FEET TO

भारत सरकार::अंतरिक्ष विभाग GOVERNMENT OF INDIA: DEPARTMENT OF SPACE इसरो उपग्रह केन्द्र, बेंगलूरु ISRO SATELLITE CENTRE, BENGALURU

परीक्षा पुस्तिका/Test Booklet

有整定的 经存储的 化对抗性性 医电影 医电影 医电影 医二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	如此时间,但是是这个时间的时间,但是是一个人的是一个人的时候的时候,一个时间是一个时间的时间,但是一个时间的时间,可以是一个人的时间,这个时间就是一个人的时间,
परीक्षा दिनांक / Date of Written Test	13.11.2016 (Sunday)
विषय / Trade	Technical Assistant (Mechanical)
परीक्षावधि / Duration of Written Test	12.30Hrs to 02.00Hrs
प्रश्नों की संख्या / No. of questions	60
उत्तर पुस्तिका में पृष्ठों की संख्या (कवर पेज सहित) No. of pages in the booklet (including cover page)	14

परीक्षार्थियों के लिए अनुदेश/Instructions to the Candidates

- यह प्रश्न-पत्र, परीक्षा-पुस्तिका के रुप में हैं। सभी परीक्षिथिंग का मूल्यांकन समरुपी प्रश्नों पर होगा।
 The question paper is in the form of test booklet. All candidates will be assessed on identical questions.
- OMR शीट पर हिदायतों को ध्यानपूर्वक पढ़िए। OMR शीट पर रंगने और अपने उत्तरों को चिह्नित करने के लिए केवल बॉल पाइन्ट कलम (काला या नीला) से ही लिखें।
 Read the instructions on the OMR sheet carefully. Use only Ball Point Pen (Black or Blue) for writing/ shading/ bubble on OMR

Read the instructions on the OMR sheet carefully. Use only Ball Point Pen (Black of Blue) for writing/ shading/ bubble on OMR sheet and marking your answers.

 उत्तरों के लिए, सभी प्रत्याशियों को कार्बन इम्प्रेशन के एक अलग OMR उत्तर शीट दिया जाएगा। OMR शीट के इस कार्बन इम्प्रेशन को निरीक्षक द्वारा अलग करके परीक्षार्थी को सौंपा जाएगा।

A separate OMR answer sheet with carbon impression is provided to all the candidates for answering. On completion of the test tear the OMR Answer sheet along the perforation mark at the top and handover the original OMR answer sheet to the invigilator and retain this duplicate copy with you.

4. प्रत्येक विषयपरक प्रश्न के लिए विषय और/या जहाँ भी आवश्यक हों वहाँ बहु उत्तर विकल्पों (a), (b), (c) और (d) के साथ चित्र दिए जाएंगे। उनमें से केवल एक की सही होगा।

Each objective question is provided with a text and/or figures wherever applicable with multiple answer choices (a), (b), (c) and (d). Only one of them is correct.

5. सभी वस्तुनिष्ठ प्रकार के प्रश्नों के समान अंक होंगे। सही उत्तर के लिए तीन अंक, उत्तर न देने पर शून्य और गलत उत्तर के लिए एक अंक काटा जाएगा। किसी प्रश्न के लिए बहु उत्तर देना गलत उत्तर माना जाएगा।
All objective type questions carry equal marks of THREE for a correct answer, ZERO for no answer and MINUS ONE for wrong

answer. Multiple answers for a question will be regarded as a wrong answer.

- 6. प्रश्न पुस्तिका की दाहिनी ओर ऊपर के किनारे पर <u>A</u> या <u>B</u> या <u>C</u> या <u>D</u> विद्वित किया गया है, जिसे OMR शीट पर, डिब्बे या बबल में लिखना अनिवार्य है। ऐसा न करने पर, उत्तर-पुस्तिका का मूल्यांकन नहीं किया जाएगा। Question booklets have been marked with <u>A</u> or <u>B</u> or <u>C</u> or <u>D</u> on the right hand top corner, which is mandatory to be written on the OMR sheet in the box and bubble appropriately, failing which, the answer sheet will not be evaluated.
- 7. पुस्तिका में उपलब्ध जगह को आवश्यकता के अनुसार कच्चे काम के लिए उपयोग किया जा सकता है। अलग से शीट नहीं दिया जाएगा। Space available in the booklet could be used for rough work, if required. No separate sheet will be provided.
- उपस्थिति शीट पर हस्ताक्षर करने से पहले, परीक्षार्थी को उपस्थिति शीट पर पुस्तिका कोड लिखना होगा। परीक्षार्थी को अपने नाम के सामने ही हस्ताक्षर करने होंगे।
 Before signing the attendance sheet, the candidate should write the Booklet Code in the attendance sheet. Candidates should sign against THEIR names only.
- परीक्षा के अंत में (1) फोटो चिपके लिखित परीक्षा कॉल लेटर (2) मूल OMR उत्तर शीट और (3) प्रश्न पत्र, निरीक्षक को वापस करना है। किसी भी परिस्थिति में उसे परीक्षार्थी द्वारा बाहर नहीं ले जाना चाहिए।
 - At the end of the test (1) Written test Call Letters(s) with photograph pasted on it (2) Original OMR Answer Sheet and (3) Question Paper shall be returned to the Invigilator and shall not be carried by the candidate under any circumstances.

Questions:

1.	एक प्रतिबल-विकृति में,	हकस का नियम	तक वैध है
	- 4 , such tan 1 15, 121 17	X-1/ 1/ 1/1/ 1/1/ 1/1/	1147 44 0

In a stress – strain of a material, Hooke's Law is valid up to

(a) पराभव बिंदु / Yield point

- (b) प्रत्यास्थ सीमा / Elastic limit
- (c) प्लास्टिक सीमा / Plastic limit
- (d) ऊपरी पराभव बिंदु / Upper yield point
- 2. जब एक शॉफ्ट बंकन आधूर्ण ${f M}$ एवं मरोड़ आधूर्ण ${f T}$ से संबंधित होता है, तो समतुल्य मरोड़ आंघूर्ण के बराबर होता है

When a shaft is subjected to a bending moment M and a twisting moment T, then the equivalent twisting moment is equal to

- (a) M+T
- (b) $M^2 + T^2$ (c) $\sqrt{M^2 + T^2}$ (d) $\sqrt{M^2 T^2}$
- 3. यदि α लीड कोण और ϕ घर्षण के कोण को दर्शाता है, तो पेंच की दक्षता _____ द्वारा दिया जाता है

If α denotes the lead angle and ϕ denotes the angle of friction, then the efficiency of the screw is given by

- (a) $\frac{\tan(\alpha-\phi)}{\tan\alpha}$ (b) $\frac{\tan\alpha}{\tan(\alpha-\phi)}$ (c) $\frac{\tan(\alpha+\phi)}{\tan\alpha}$ (d) $\frac{\tan\alpha}{\tan(\alpha+\phi)}$
- दिए गए चित्र में बल F के बराबर होगा

Force F in the given figure equals to:

- (a) $\sqrt{3}$ kN
- (b) 2 kN
- (c) $-\sqrt{3}$ kN
- (d) $3\sqrt{3}$ kN
- 5. तरल का गुणधर्म जो अपरुपण विरोध की अपनी क्षमता दर्शाता है को The property of a fluid that expresses its ability to resist shear is called
 - (a) श्यानता / viscosity

(b) पृष्ठ तनाव / surface tension

(c) उत्पावकता / buoyancy

- (d) संपीड्यता / compressibility
- 6. $\mathbf{M} \ \mathrm{kgf} \ \mathrm{vir}$ वाले पिंड को तरल में निमज्जन किया जाता है तो वह $\mathbf{N} \ \mathrm{kgf}$ के तरल को विस्थापित करता है। पिंड का आभासी भार है

	A body of weight M kgf is immersed in a riu. The apparent weight of the body is	id and disprac	es iv kgi of nuk	
((a) M+N Kgf (b) N Kgf	(c) M-	N Kgf (d) non	e of these
7. प	रिवर्ती अनुप्रस्थ काट की नली से असंपीडित द्रव लगात	ार $\mathbf{A_1}$ से $\mathbf{A_2}$ को	बहता है तो	
	an incompressible liquid flows steadily throughout A_1 to A_2 . Given: $A_1/A_2 = 0.5$, V_1 at $A_2 = 0.5$, $V_1 = 0.5$			
(a)) 4 m/s (b) 1 m/s	(c) 0.25 m/s		(d) 3 m/s
8. f	नेम्नलिखित में से कौन सा नियम द्रवचालित लिफ्त	ट पर लागू होता	है	
W	Which one of the following laws is applicable	e to a hydrauli	c lift?	
`	a) किरचॉफ की नियम / Kirchhoff's law) अरकिमिडी का सिद्धांत / Archimede's princ	` /	प्तकल का नियम . टन नियम / New	
9. T	एक फीलर गैज मात्रीकरण के लिए प्र	ायोग किया जात	ता है	
	A Feeler Gauge is used for quantifying		·	
	a) सतह खुरदरापन / Surface Roughness c) रिक्ति / gap		त्या / Radius पिच / Screw Pi	tch
	बेलनाकार के लिए प्रतीक है The symbol for Cylindricity is			
	,	(c) /	/	(d) (o)
	एक पिंड के वास्तविक भौतिक केन्द्र एवं इसके कहते हैं	घूर्णन अक्ष के ब	गिच अधिकतम अं	तर को
	The maximum difference between the actual rotation is called	physical cent	re of a body and	l its axis of
	(a) अक्षीय रन आउट / Axial run out (c) असरेखण / Misalignment	(b) त्रिज्य रन उ (d) सर्पण / Sl	।।उट / Radial ru p	n out
12.	नार्मल डिस्ट्रीब्यूशन वक्र में, ±3 σ परासन का अर्थ है	·	•	

•						•	
In a N	lormal distribi	ation curve, =	± 3σ ra	inge means			
(a) 99.	74%	(b) 97.94%	ó	(c) 95.	46%	(d) 68,26	%
13. नियम ज	ो तापमान के म	गपन के आधा	र को व	बनाता है		() 1 3120	, ,
The law	that forms th	e basis of me	easurei	nent of tem	perature is		
(c) ऊष	नागतिकि का 0 ^t गागतिकि का 1 ^s गागतिकि का 2 ⁿ hhoff's का निय	' नियम / 1 st । ^d नियम / 2 nd	aw of	thermodyna f thermodyn	•		
14. एक प्रण Intensiv	ाली का गहन गु e Property of	णधर्म वह है ज a system is tl	नो 1e one	that			
(c) पथ फ	ान पर निर्भर न ान पर निर्भर क र निर्भर करता ान एवं पथ पर	है / Dananda P / Dananda	ends o	on mass		path followed	
15. गे- लुसाक As per G	के नियम के उ ay Lussac's la sure at temper	नुसार, इनम् भू भूभंडी वन	ों से कै	ोन सा सही ब	यान है		
(a) $P_T =$	$P_0 \left(1 + \frac{T}{273}\right)$)	(b)	$P_{T} = P_{0} ($	$\frac{1}{T} + 273$)	
(c) $P_T =$	P ₀ (273+T)		(d)	$P_T = P_0$	(T+1)		
16. प्रक्रिया जि / The pro	तमें सीमाओं के cess in which	आर-पार को no heat trans	ई भी र sfer tal	ऊष्मा अंतरण kes place ac	। नहीं होता ross the bo	है उसे undaries is cal	_ कहते हैं led as
(a) एडियाबे (b) आइसोव (c) समतापी	टिक प्रक्रिया / गोरिक प्रक्रिया प्रक्रिया / isot ट्रोपिक प्रक्रिया	adiabatic pro	ocess	S			
17. दाब में वृद्धि		ी संतप्ति ताप	मान	ਸੇਂ ਕ	द्धि करता है essure incre	r Pases	
(a)व्यत्क्रम /				<u>.</u> . – .			

(b) पहले धीरे-धीरे से और फिर तेज़ी से / slowly first and then rapidly (c) पहले तेज़ी से और फिर धीरे - धीरे से / rapidly first and then slowly (d) रैखिक से / linearly 18. ऊष्मागतिकी के प्रथम नियम के लिए सही बयान है Correct statement for First law of thermodynamics (a) प्रणाली और आस-पास की कुल ऊर्जा निरंतर बनी रहती है Total energy of system and surroundings remains constant (b) प्रणाली द्वारा किया गया कार्य प्रणाली द्वारा अंतरित ऊष्मा की बराबरी करता है Work done by the system equals to heat transferred by the system (c) प्रक्रिया के दौरान एक प्रणाली का आंतरिक ऊर्जा निरंतर बनी रहती है Internal energy of a system remains constant during a process (d) प्रकिया के दौरान प्रणाली को एंट्रॉपी निरंतर बना रहता है Entropy of a system remains constant during a process. 19. डीज़ल चक्र की दक्षता ओटो चक्र के समीप जाता है जब The efficiency of diesel cycle approaches to Otto cycle efficiency when (a) कट-ऑफ अनुपात शून्य है / Cut off ratio is zero (b) कट-ऑफ अनुपात बढ़ जाता है / Cut off ratio is increased (c) कट-ऑफ अनुपात घट जाता है / Cut off ratio is decreased (d) कट-ऑफ अनुपात युनिटि के बराबर होता है / Cut of ratio is equal to unity 20. एक जेट इंजन के संरक्षण के सिद्धांत पर कार्य करता है A jet engine works on the principle of conservation of (a) ব্ৰজা / Energy (b) द्रव्यमान / mass (d) रैखिक संवेग / linear momentum (c) कोणीय संवेग / angular momentum 21. बॉयल नियम के अनुसार, कौन-सा बयान सही है As per Boyle's law, which one is the correct statement?

(a) $P \alpha (1/V)$

(b) P α V

(c) $T \alpha (1/V)$

(d) $T \alpha V$

जहाँ P, V व T क्रमश: गैसीय माध्यम का दाब, आयतन एवं तापमान हैं। Where P, V & T are respectively pressure, volume and temperature of gaseous medium.

22. यदि दो बल वैक्टर F1 और F2 के बीच एक साथ एक पिंड पर θ के कोण है, तो परिणामी बल ----है

If two force vectors $F_1 \& F_2$ with the angle between them θ acting on a body simultaneously, then the resultant force is _____

Question Booklet Series - ${\boldsymbol B}$

		•	•		
(a) [$F_1^2 + F_2^2 - 2F_1F_2$ co	$\left[\mathbf{s}(\mathbf{ heta}) \right]^{1/2}$	(b) $[F_1^2 + F_2^2 + 2F$	$_1\mathrm{F}_2\mathrm{cos}(\theta)]^{\frac{1}{2}}$	
(c) [$F_1^2 + F_2^2 - 2F_1F_2\sin\theta$	$n(\theta)]^{1/2}$	(d) $[F_1^2 + F_2^2 + 2F_3]$	$F_1F_2\sin(\theta)$] $\frac{1}{2}$	
23. एक उ	समभुज त्रिकोण जि	सकी भुजा \mathbf{x} है , के गुर	ल्लाकर्षण केंद्र की ऊँचाई .	भुजा के मध्य से	है
	Centre of Gravity an from any side		angle of side x lies at a	height measure	ed on a
(a)	$\left(\frac{2}{\sqrt{3}}\right)x$	(b) $\left(\frac{\sqrt{3}}{2}\right)x$	(c) $\frac{1}{2}$	$\frac{x}{2\sqrt{3}}$ (d) $\frac{x}{3}$	ar .
24 विमान	थिय ा में केन्द्रक के मा	रम को किसी परिच्छेद व ध्यम से गुजरने से अल	ठी जड़त्व आघूर्ण की निष्क्रि ग है की गणना करने के	प्यता के क्षण जो धुरी लिए प्रयोग किया जात	एक ही 11 है।
			moment of inertia of bugh the centroid in the		he axis
(b) ₹ (c) ₹	ामान अक्ष थियरम गिधा अक्ष थिय्रम	Cross axis theorem / Equal axis theorem / Perpendicular ax रम / Parallel axis th	is theorem		
		। क्रॉस सेक्शन A, लंबाई ग द्वारा दिया जाता है	L, और यंग माड्यूलस् E, र 	तनन बल P के अधीन है	, तो रॉड
mod		l to tensile force of I	ion A, Length L, and P, then increase in the le		ven
(a)	PL/AE	(b) P ² L/AE	(c) PL^2/AE	(d) PL/A^2E	
26. बंकन	आघूर्ण आरेख में को	न्ट्रा-फ्लेक्सर बिंदु का प्र	तिनिधित्व करता है	. · · · · · · · · · · · · · · · · · · ·	
The	oint of contra-fl	exure in a bending n	noment diagram represe	ents	
(b) (c)	न्यूनतम बंकन आघूप न्यूनतम अपरुपण	ाघूर्ण / Maximum be र्ग / Minimum bendi बल / Minimum s संकेत का बदलाव / C	ng moment	nding moment	
		ति ऊर्जा, जब भार ध द्वारा दिया जाता	धीरे-धीरे प्रत्यास्थता सीमा वे है	के अंदर लागू किया ज	गता है।

	n by the equation	when the load is grad	ually applied within th	ie
(a) σV/2E	(b) $\sigma^2 V/2E$	(c) $\sigma^3 V/2E$	(d) $\sigma^4 V/2E$	
Where, $\sigma = \text{stress}$	ss, V = Total volume &	E=Young's modulus		
28. x का मान पता लगा	र, अगर मैट्रिक्स [1 : 2 : 3	$egin{array}{ccc} 2 & 5 \ x & 10 \ 1 & -2 \ \end{bmatrix}$ सिंगुलर है		
•	x, if the given matrix			
(a) 4	(b) - 4	(c) $\frac{1}{4}$	(d) $-\frac{1}{4}$	
29. $\frac{\pi}{12}$ रेडियंस को डिग्रं Express $\frac{\pi}{12}$ radia	and the second s			,
(a) -15	(b) 30	(c) -30	(d) 15	
$^{12}\mathrm{C}_4$ के मूल्य का Find the value o	पता लगाएं $^{12}\mathrm{C}_4$			
(a) 459	(b) 455	(c) 495	(d) 485	
31. त्रिकोण जिसकी दो भु का पता लगाएं Find the area of tria 5i+7j+k is	जाएं वैक्टर 31 + 4J और 5 angle whose two sides			फ ल
(a) $\frac{\sqrt{26}}{2}$	(b) $\sqrt{26}$	(c) 13	(d) $\frac{\sqrt{13}}{2}$	
32. एक लाइन AB के मध के निर्देशांक का पता Co ordinates of mid the co ordinates of	तगाएँ lpoint of a line AB is (नेर्देशांक (-4, -22) है र of A is (-4,-22) then f	

(b) (32, 30) (c) (-32,-30)

33. $[\sin{(150^0)}\cos{(300^0)}] + [\sin{(210^0)}\cos{(240^0)}]$ के मूल्य का पता लगाएं

(a) (24,-16)

Page 7 of 14

(d) (32,-30)

	Find the val	ue of [Sin (150 ⁰) Cos (30	$[00^0)] + [Sin (210^0) Cos ($	(240^0)]	·
	(a) 2	(b) $\frac{1}{2}$	(c) -2	(d)	<u>-1</u> 2
34.	यदि y= (x+2)(x	$(x+3)$ है, तो $\frac{dy}{dx}$ का	पता लगाएं		
	y=(x+2)(x	-1)(x+3), find $\frac{dy}{dx}$			
	(a) $3x^2+8$	(b) $3x^2 + 8x - 1$	$(c)2x^2+4x-6$	(d)	$3x^2 + 8x + 1$
35.		$+ e^{-5x}$ तो d^2y/dx $+ e^{-5x}$ find the value			
	(a) 8	(b) 34	(c) -16		16
36.		ता का यूनिट है al conductivity is			
	(a) J/m/s	(b) W/m ² K	(c) W/mK	(d) J/°C	
37.	पूर्वानुमान द्वारा The amount of	ा अनुप्रस्थ काट क्षेत्र 0.1 m नाप की मात्रा स्थानांतरित f f heat transferred under si nickness of 0.02 m with f	केया जाता है teady state across a slab		
	Material cond	uctivity: 150 W/mK ; Ter	mperature gradient 20 °C	Cis	
	(a) 2 kW	(b) 6 kW	(c) 3 kW	,	(d) 15 kW
38.	•	ड़िने के उपरांत एवं संघनित्र efrigerant after leaving th	**		
		বাष्प / Super heated vapo পুण / Saturated mixture			
39.	٠.	ार नियम के अनुसार एक उ ier law of heat conduction	•		· '
	section, T: ता	যালকরা /Thermal conduc पमान/Temperature x: उ ong the direction of heat	ज्यमा प्रवाह की दिशा के स		
			,		Page 8 of 1

	(a) –KA dT/dx	(b) KA dT/dz	(c)	−KA dx/dT	(d) KA dx/dT
40.	CANDU प्रकार के परमाणु रिऐक्ट	रों में, कौन सा स	ही है		,
	In a CANDU type of Nuclear i	eactors, which	is true?		
	(a) प्राकृतिक यूरेनियम ईंधन के र Natural Uranium is used (b) प्राकृतिक यूरेनियम ईंधन के र Natural Uranium is used (c) संवर्धित यूरेनियम ईंधन के रुप Enriched Uranium is use (d) संवर्धित यूरेनियम ईंधन के रुप Enriched Uranium is use	l as fuel and w ज्य में एवं मॉडरेटर l as fuel and he में एवं मॉडरेटर वे ed as fuel and प में एवं मॉडरेटर वे	ater as mode के रुप में भारी eavy water as के रुप में पानी व water as mod के रुप में भारी प	rator पानी का प्रयोग किया s moderator हा प्रयोग किया जाता है lerator गनी का प्रयोग किया ज	जाता है
41.	निम्न शीर्षों के लिए, इन टरबाइन क For low heads only, these tur		ना है	·	
	(a) कापलान टरबाइन / Kaplan (c) पेल्टन चक्र / Pelton wheels	turbine	(b) फ्रांसिस ((d) डेरियाज	टरबाइन / Francis t टरबाइन / Deriaz tı	urbine urbines
-	(LVDT) का प्रयोग के Linear variable differential tran		,	measuring	
	(a) वेग / Velocity (c) विस्थापन / Displacement		(b) त्वरण / (d) समय / '	Acceleration Time	
43. (CNC प्रोग्रामन के दौरान G33 कोड	का उद्देश्य है			
	The purpose of G33 code durin	ng CNC progra	amming		
	(a) शून्य पूर्व स्थापी / Zero prese	t (b)मैट्रिक यूनि	ोटों में विमा / I	Dimensioning in n	netric units
	(c) चूड़ी कर्तन / Thread cutting	g (d) वास /	Dwell		
है	कास्ट आयरन में विद्यमान कार्बन ; `he carbon present in Cast iron				•
					n known as
	(a) फेराइट / Ferrite (c) सिमेंटाइट / Cementite	` _	यरलाइट / Pe टेडाइट / Stea		
45.	कास्ट आयरन का अद्वितीय गुणधर्म	है उसका उच्च			

	The unique property of cast from is its high	
	(a) आघात वर्ध्यता / malleability (c) लचीलापन / ductility	(b) सतह परिष्कृत / surface finish (d) भंगु / brittle
6.	एक बेल्ट ड्राइव प्रणाली में, जब बेल्ट की गति बढ़ती	है, तो
	In a belt drive system, when the speed of belt increas	es,
	(a) बेल्ट और चरखे के बीच घर्षण गुणांक बढ़ जाता है coefficient of friction between the belt and pull	ey increases
	(b) बेल्ट और चरखे के बीच घर्षण गुणांक घट जाता है coefficient of friction between the belt and pulle	ey decreases
	(c) प्रसारित शक्ति में कमी होगी power transmitted will decrease	
	(d) प्रसारित शक्ति में वृद्धि होगी power transmitted will increase	
ŀ7.	एक चरखे और बेल्ट ड्राइव में, यदि बेल्ट का द्रव्यमान तनाव है तो अधिकतम विद्युत प्रेषण के लिए बेल्ट क	प्रति लंबाई m है और т बेल्ट का ा वेग के बराबर है
	In a pulley and belt drive, if m is mass of belt per unit the velocity of belt for maximum power transmission is	_
	(a) $\sqrt{\frac{T}{m}}$ (b) $\sqrt{\frac{T}{2m}}$ (c)	$\int \frac{2T}{m} $ (d) $\sqrt{\frac{T}{3m}}$
18.	A spur gear with pitch circle diameter D has number	• • • • • • • • • • • • • • • • • • • •
	as (a) $m = \frac{D}{T}$ (b) $m = \frac{T}{D}$ (c) $m = \frac{\pi D}{T}$	(d) $m = \pi DT$
19.	एंटिफ्रिक्शन बीयरिंग हैं Antifriction bearings are	
	(a) पतली चिकनाई बीयरिंग / thin lubricated bearings (b) हाइड्रोडायनेमिक्स बीयरिंग / hydrodynamic bearing (c) हाईड्रोस्टेटिक बीयरिंग / hydrostatic bearings (d) गेंद और रोलर बीयरिंग / ball and roller bearings	
60.	शाप जिसमें कास्टिंग की सफाई की जाती है को	
	The Shop in which castings are cleaned is called	 Page 10 of 1 4
		1450 13 01 21

	(a) मशीन शाप / Machine shop (c)फेटलिंग शाप / Fettling shop	(b) वर्कशाप / Workshop (d) फाउंड्री शाप / Foundry shop
51.	निघर्षण कार्य से उपकरण को रोकने के लि In order to prevent tool from rubbing th	ए उपकरणों पर को उपलब्ध कराया जाता है / ne work on tools are provided.
	(a) रेक कोणं / rake angles (c) फ्लूट कोण / Flute angle	(b) राहत कोण / relief angles (d) स्टार्ट कोण / start angle
	पटल को झुकाया जाता है	ार स्वईवल व्यवस्था उपलब्ध कराने द्वारा ऊर्ध्वाधर प्लेन में hine, the table can be tilted in a vertical plane by nee?
	(a) यूनिवर्सल मिलिंग मशीन / Univ (b) प्लेन मिलिंग मशीन / Plain mill (c) ओमनिवर्सल मशीन / Omniver (d) हस्त मिलिंग मशीन / Hand mil	ling machine sal milling machine
ī	कतरन वेग आधा किया जता है तो उपस्कर व In a single point turning operation with	र्बाइड और स्टील संयोजन जिसमें टेयलर धात 0.25 है का की आयु होगी a cemented carbide and steel combination having a eed is halved, then tool life will become
54.	(a) half (b) two times संचकों की सफाई की विधि नहीं is not a method of casting	
	(a) शॉट क्षेपन / Shot blasting (c) टंबलिंग / Tumbling	(b) रेत क्षेपन / Sand blasting (d) अम्ल / Acid blasting
Ē.	क अनुप्रयुक्त किया जा सकता है	plastics

56	. एक पिंड का आवेग में The impulse of a body is rate ((a) बल / Force (c) संवेग / Momentum		(b) त्वर	ण / Acceleration गपन / Displacemen	t
57	. जब एक पिंड पर विभिन्न कार्रवाई क्रिया करते हैं, तो वे When two equal, opposite and constitute a (a) आघूर्ण / Moment (b) (c) जड़ता / Inertia	गठित करते हैं parallel forces w (b) युग	ith different line ল / Couple		body, they
58	जब द्रव्यमान m का एक पिंड घूप तो पिंड द्वारा अनुभवित त्रिज्य त्वर When a body of mass m is rota centre of rotation, the radial ac	रण होता ating with an ang	है ılar velocity ω	at a distance R from	
	(a) $\omega^2 R$ (b)	ω R	(c) \omega/R	(d) R/ω	
59.	. बेल्ट ड्राइव प्रणाली में, यदि टाइ एवं v बेल्ट का वेग होता है, तो In a belt drive system, if T 1 is and V is the velocity of the bel	प्रसारित शक्ति the tension on the	है tight side, T2 is		
	(a) $(T_2-T_1) V$ (b) (T ₁ -T ₂) V	(c) $(T_1-T_2)/V$	(d) V/(T ₁ -7	Γ_2)
60.	पोर्टर गवर्नर का उदाह The Porter governor is an exam				
	(a) जड़त्व गवर्नर / Inertia g (c) अपकेन्द्री गवर्नर / Centri			ावर्नर / Flywheel go ई नहीं / None of thes	

Rough Work page रफ वैकि पैज

Question Booklet Series - ${\bf B}$

Rough work page रफ वैकि पैज